Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 206(3): e0038223, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38411048

RESUMO

Hemolytic phospholipase C, PlcH, is an important virulence factor for Pseudomonas aeruginosa. PlcH preferentially hydrolyzes sphingomyelin and phosphatidylcholine, and this hydrolysis activity drives tissue damage and inflammation and interferes with the oxidative burst of immune cells. Among other contributors, transcription of plcH was previously shown to be induced by phosphate starvation via PhoB and the choline metabolite, glycine betaine, via GbdR. Here, we show that sphingosine can induce plcH transcription and result in secreted PlcH enzyme activity. This induction is dependent on the sphingosine-sensing transcriptional regulator SphR. The SphR induction of plcH occurs from the promoter for the gene upstream of plcH that encodes the neutral ceramidase, CerN, and transcriptional readthrough of the cerN transcription terminator. Evidence for these conclusions came from mutation of the SphR binding site in the cerN promoter, mutation of the cerN terminator, enhancement of cerN termination by adding the rrnB terminator, and reverse transcriptase PCR (RT-PCR) showing that the intergenic region between cerN and plcH is made as RNA during sphingosine, but not choline, induction. We also observed that, like glycine betaine induction, sphingosine induction of plcH is under catabolite repression control, which likely explains why such induction was not seen in other studies using sphingosine in rich media. The addition of sphingosine as a novel inducer for PlcH points to the regulation of plcH transcription as a site for the integration of multiple host-derived signals. IMPORTANCE: PlcH is a secreted phospholipase C/sphingomyelinase that is important for the virulence of Pseudomonas aeruginosa. Here, we show that sphingosine, which presents itself or as a product of P. aeruginosa sphingomyelinase and ceramidase activity, leads to the induction of plcH transcription. This transcriptional induction occurs from the promoter of the upstream ceramidase gene generating a conditional operon. The transcript on which plcH resides, therefore, is different depending on which host molecule or condition leads to induction, and this may have implications for PlcH post-transcriptional regulation. This work also adds to our understanding of P. aeruginosa with host-derived sphingolipids.


Assuntos
Betaína , Pseudomonas aeruginosa , Betaína/metabolismo , Pseudomonas aeruginosa/metabolismo , Esfingosina/metabolismo , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo , Ceramidases/metabolismo
2.
Microbiology (Reading) ; 168(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35266867

RESUMO

Glutamine amidotransferase-1 domain-containing AraC-family transcriptional regulators (GATRs) are present in the genomes of many bacteria, including all Pseudomonas species. The involvement of several characterized GATRs in amine-containing compound metabolism has been determined, but the full scope of GATR ligands and regulatory networks are still unknown. Here, we characterize Pseudomonas putida's detection of the animal-derived amine compound creatine, a compound particularly enriched in muscle and ciliated cells by a creatine-specific GATR, PP_3665, here named CahR (Creatine amidohydrolase Regulator). cahR is necessary for transcription of the gene encoding creatinase (PP_3667/creA) in the presence of creatine and is critical for P. putida's ability to utilize creatine as a sole source of nitrogen. The CahR/creatine regulon is small, and an electrophoretic mobility shift assay demonstrates strong and specific CahR binding only at the creA promoter, supporting the conclusion that much of the regulon is dependent on downstream metabolites. Phylogenetic analysis of creA orthologues associated with cahR orthologues highlights a strain distribution and organization supporting probable horizontal gene transfer, particularly evident within the genus Acinetobacter. This study identifies and characterizes the GATR that transcriptionally controls P. putida's metabolism of creatine, broadening the scope of known GATR ligands and suggesting GATR diversification during evolution of metabolism for aliphatic nitrogen compounds.


Assuntos
Pseudomonas putida , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Creatina/genética , Creatina/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Filogenia , Regiões Promotoras Genéticas , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
3.
J Bacteriol ; 201(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31109991

RESUMO

Stenotrophomonas maltophilia is a Gram-negative opportunistic pathogen that can infect the lungs of people with cystic fibrosis (CF). The highly viscous mucus in the CF lung, expectorated as sputum, serves as the primary nutrient source for microbes colonizing this site and induces virulence-associated phenotypes and gene expression in several CF pathogens. Here, we characterized the transcriptional responses of three S. maltophilia strains during exposure to synthetic CF sputum medium (SCFM2) to gain insight into how this organism interacts with the host in the CF lung. These efforts led to the identification of 881 transcripts differentially expressed by all three strains, many of which reflect the metabolic pathways used by S. maltophilia in sputum, as well as altered stress responses. The latter correlated with increased resistance to peroxide exposure after pregrowth in SCFM2 for two of the strains. We also compared the SCFM2 transcriptomes of two S. maltophilia CF isolates to that of the acute infection strain, S. maltophilia K279a, allowing us to identify CF isolate-specific signatures in differential gene expression. The expression of genes from the accessory genomes was also differentially altered in response to SCFM2. Finally, a number of biofilm-associated genes were differentially induced in SCFM2, particularly in K279a, which corresponded to increased aggregation and biofilm formation in this strain relative to both CF strains. Collectively, this work details the response of S. maltophilia to an environment that mimics important aspects of the CF lung, identifying potential survival strategies and metabolic pathways used by S. maltophilia during infections.IMPORTANCEStenotrophomonas maltophilia is an important infecting bacterium in the airways of people with cystic fibrosis (CF). However, compared to the other CF pathogens, S. maltophilia has been relatively understudied. The significance of our research is to provide insight into the global transcriptomic changes of S. maltophilia in response to a medium that was designed to mimic important aspects of the CF lung. This study elucidates the overall metabolic changes that occur when S. maltophilia encounters the CF lung and generates a road map of candidate genes to test using in vitro and in vivo models of CF.


Assuntos
Fibrose Cística/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Escarro/microbiologia , Stenotrophomonas maltophilia/genética , Antibacterianos/farmacologia , Genoma Bacteriano , Humanos , Filogenia , Especificidade da Espécie , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...